skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pillai, T_G S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Almost all the physics of star formation critically depends on the number density of the molecular gas involved. However, the methods to estimate this keystone property often rely on very uncertain assumptions about the geometry of the molecular fragment, or depend on overly simplistic, uniform models, or require time-expensive observations to simultaneously constrain the gas temperature as well. An easy-to-use method to observationally derive the number density that is valid under realistic conditions is conspicuously absent, causing an evident asymmetry in how accurately the volume density is estimated, and how often dedicated tracers are used, compared to the gas temperature. Aims. To fill this gap, we propose and calibrate a versatile diagnostic tool based on methanol spectral lines that greatly simplifies the inference of molecular number density. Methanol is abundant in both cold and hot gas, and has a dense spectrum of lines, which maximises observational efficiency. It can therefore be applied to a wide variety of scales, from entire clouds to protostellar discs, and both in our Galaxy and beyond. Moreover, this tool does not need to be tailored to the specific source properties (such as distance, temperature, and mass). Methods. We construct large grids of clump models and perform radiative transfer calculations to investigate the robustness of different line ratios as density probes with different assumptions, also in the presence of density and temperature gradients. Results. We find that the line ratios of the (2K− 1K) band transitions around 96.7 GHz are able to fully constrain the average number density along the line of sight within a factor of two-three in the range ~5 × 104−3 × 107cm−3. The range can be extended down to a few times 103cm−3, when also using line ratios from the (5K− 4K) and/or (7K− 6K) bands, around 241.7 GHz and 338.1 GHz, respectively. We provide the reader with practical analytic formulas and a numerical method for deriving volume density and its uncertainty from observed values of the line ratios. Conclusions. Thanks to our calibration of line ratios, we make the estimate of the number density much simpler, with an effort comparable or inferior to deriving excitation temperatures. By providing directly applicable recipes that do not require the creation of a full large velocity gradient model grid, but are equally accurate, we contribute to offsetting the disparity between these two fundamental parameters of the molecular gas. Applying our method to a sub-sample of sources from the ATLASGAL TOP100 we show that the material in the clumps is being compressed, and this compression accelerates in the latest stages. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. The interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 Myr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ. 
    more » « less